2024

Future increases in soil moisture drought frequency at UK monitoring sites: merging the JULES land model with observations and convection-permitting UK climate projections, Szczykulska, M. et al., Environmental Research Letters, 19, 104024 (2024), https://doi.org/10.1088/1748-9326/ad7045 

Potential thermal safety margin for plant photosynthesis derived from local temperature variability, Kumarathunge, D.P., Jiang, M. and Huntingford, C., Ecological Modelling, 496, 110832 (2024), https://doi.org/10.1016/j.ecolmodel.2024.110832

Little evidence of hysteresis in regional precipitation, when indexed by global temperature rise and fall in an overshoot climate simulation, Walton, J. and Huntingford, C., Environmental Research Letters, 19, 084028 (2024), https://doi.org/10.1088/1748-9326/ad60de

Testing the assumptions in emergent constraints: why does the “emergent constraint on equilibrium climate sensitivity from global temperature variability” work for CMIP5 and not CMIP6?, Williamson, M. et al., Earth System Dynamics, 15, 829-852 (2024), https://doi.org/10.5194/esd-15-829-2024

Increased crossing of thermal stress thresholds of vegetation under global warming, Li, X. et al., Global Change Biology, 30, e17406 (2024), https://doi.org/10.1111/gcb.17406

Optimal approaches for COVID-19 control: the use of vaccines and lockdowns across societal groups, Bonsall, M.B. et al., Frontiers in Epidemiology, 4, 1308974 (2024), https://doi.org/10.3389/fepid.2024.1308974

A framework for improved predictions of the climate impacts on potential yields of UK winter wheat and its applicability to other UK crops, Hayman, G et al, Climate Services, 34, 100479 (2024), https://doi.org/10.1016/j.cliser.2024.100479

Acceleration of daily land temperature extremes and correlations with surface energy fluxes, Huntingford, C et al, npj Climate and Atmospheric Science, 7, Art. Num. 84 (2024), https://doi.org/10.1038/s41612-024-00626-0 

Vegetation greenness in 2023, Li, X. et al., Nature Reviews Earth & Environment, 5, 241-243 (2024), https://doi.org/10.1038/s43017-024-00543-z 

Integrating ecosystem water demands into drought monitoring and assessment under climate change, Cui, J. et al., Nature Water, 2, 215-218 (2024), https://doi.org/10.1038/s44221-024-00217-6

2023

CHESS-SCAPE: high-resolution future projections of multiple climate scenarios for the United Kingdom derived from downscaled United Kingdom Climate Projections 2018 regional climate model output, Robinson, E.L. et al., Earth System Science Data, 15, 5371-5401 (2023), https://doi.org/essd-15-5371-2023

Committed global warming risks triggered multiple climate tipping points, Abrams, J.F., Huntingford, C. et al, Earth's Future11e2022EF003250, (2023), https://doi.org/10.1029/2022EF003250

Potential impacts of rapidly changing european use of fossil fuels on global warming, Huntingford et al., 5091002 Environmental Research Communications, (2023), https://doi.org/10.1088/2515-7620/acf3d7

CO2 fertilization contributed more than half of the observed forest biomass increase in northern extra-tropical land, He, Y. et al., Global Change Biology, (2023), https://doi.org/10.1111/gcb.16806 

Autumn canopy senescence has slowed down with global warming since the 1980s in the Northern Hemisphere, Zhang, Y. et al., Communications Earth & Environment4, 173 (2023), https://doi.org/10.1038/s43247-023-00835-0  

Emergent constraints for the climate system as effective parameters of bulk differential equations, Huntingford, C. et al., Earth System Dynamics,  433-442 (2023), https://doi.org/10.5194/esd-14-433-2023

Global variations in critical drought thresholds that impact vegetation, Li, X et al., National Science Review, (2023), https://doi.org/10.1093/nsr/nwad049

Drivers and impacts of Eastern African rainfall variability. Palmer, P.I. et al., Nature Reviews Earth & Environment, (2023), https://doi.org/10.1038/s43017-023-00397-x

Seeking more robust early warning signals for climate tipping points: the ratio of spectra method (ROSA). Clarke, J. ., Huntingford, C., Ritchie, P.D.L. and Cox, P.M., 18, Art Num: 035006, Environmental Research Letters, (2023), https://doi.org/10.1088/1748-9326/acbc8d

The detection and attribution of extreme reductions in vegetation growth across the global land surface. Yang, Y., Munson, S.M., Huntingford, C. et al, Global Change Biology, (2023), https://doi.org/10.111/gcb.16595

A new precipitation emulator (PREMU v1.0) for lower-complexity models. Liu, G., Peng, S., Huntingford, C. and Xi, Y, Geoscientific Model Development, (2023), https://doi.org/10.5194/gmd-16-1277-2023

2022

Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Cui, J., Lian, X., Huntingford, C., Gimeno, L., Wang, T., Ding, J., He, M., Xu, H., Chen, A., Gentine, P. and Piao, S., Nature Geoscience, (2022), https://doi.org/10.1038/s41561-022-01061-7

Resilience of UK crop yields to compound climate change. Slater, L.J., Huntingford, C., Pywell, R.F., Redhead, J.W. and Kendon, E.J., Earth System Dynamics13 1377-1396 (2022), https://doi.org/10.5194/esd-13-1377-2022

Increases in the temperature seasonal cycle indicate long-term drying trends in Amazonia. Ritchie, P.D.L. et al., Communications Earth & Environment3 199 (2022), https://doi.org/10.1038/s43247-022-00528-0

Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation. Oliver, R.J. et al., Geoscientific Model Development15 5567-5592 (2022), https://doi.org/10.5194/gmd-15-5567-2022 

Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation. He, M., Piao, S., Huntingford, C. et al., Communications Earth & Environment3 160 (2022), https://doi.org/10.1038/s43247-022-00489-4

Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Wang, K. et al., Nature Communications13 3469 (2022), https://doi.org/10.1038/s41467-022-31175-w

Thawing permafrost as a nitrogen fertiliser: implications for climate feedbacks. Burke, E., Chadburn, S. and Huntingford, C. Nitrogen3, 353-375 (2022), https://doi.org/10.3390/nitrogen3020023 

Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake. Wu, C., Sitch, S., Huntingford, C., Mercado, L.M. et al Proceedings of the National Academy of Sciences of the United States of America119, e2101186119 (2022), https://doi.org/10.1073/pnas/2101186119 

The 2021 western North America heat wave among the most extreme events ever recorded globally. Thompson, V., Kennedy-Asser, A.T., Vosper, E., Lo, Y.T.E., Huntingford, C. et al Science Advances8, eabm6860 (2022), https://doi.org/10.1126/sciadv.abm6860

Nitrogen cycle impacts on CO2 fertilisation and climate forcing of land carbon stores. Huntingford, C., Burke, E.J., Jones, C.D., Jeffers, E.S. and Wiltshire, A.J. Environmental Research Letters17, 044072 (2022), https://doi.org/10.1088/1748-9326/ac6148 

A New Modelling Approach to Adaptation-Mitigation in the Land System. Maire, J., Alexander, P., Anthoni, P., Huntingford, C., Pugh, T. A. M., Rabin, S., Rounsevell, M., & Arneth, A. (2022). In Climate Adaptation Modelling (Springer Climate (SPCL)). p133-140. Springer. https://doi.org/10.1007/978-3-030-86211-4_16

Impact of merging of historical and future climate data sets on land carbon cycle projections for South America. Huntingford, C., Sitch, S.A. and O'Sullivan, M., Climate Resilience and Sustainability1, e24 (2022), https://doi.org/10.1002/cli2.24

2021

Climate change and Lyme disease. Cox, P., Huntingford, C., Sparey, M. and Nuttall, P. (2021). In Climate, ticks and disease (CABI). p18-25. https://doi.org/10.1079/9781789249637.0003

Strong direct and indirect influences of climate change on water yield confirmed by the Budyko framework. Yang, H., Xu, H., Huntingford, C., Ciais, P. and Piao, S., Geography and Sustainability, 2, 281-287 (2021), https://doi.org/10.1016/j.geosus.2021.11.001 

Constraints on estimating the CO2 fertilization effect emerge. Huntingford, C. and Oliver, R.J., Nature, 600, 224-225 (2021), https://doi.org/10.1038/d41586-021-03560-w (This is a News and Views document)

The Montreal Protocol protects the terrestrial carbon sink. Young, P.J., Harper, A.B., Huntingford, C. et al., Nature,  596, 384-388 (2021), https://doi.org/10.1038/s41586-021-03737-3

Optimal COVID-19 vaccine sharing between two nations that also have extensive travel exchanges. Huntingford, C., Rawson, T. and Bonsall, M.B., Frontiers in Public Health9: 633144 (2021), https://doi.org/10.3389/fpubh.2021.633144

Vegetation response to rising CO2 amplifies contrasts in water resources between global wet and dry land areas. Cui, J., Yang, H., Huntingford, C., Kooperman, G.J., Lian, X., He, M. and Piao, S, Geophysical Research Letters48, e2021GL094293 (2021), https://doi.org/10.1029/2021GL094293

Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements, Harper, A.B. et al., Geoscientific Model Development14, 3269-3294 (2021), https://doi.org/10.5194/gmd-14-3269-2021

Unusual characteristics of the carbon cycle during the 2015-2016 El Niño. Wang, K. et al., Global Change Biology, (2021), https://doi.org/10.1111/gcb.15669

Emergent constraints on climate sensitivities. Williamson, M.S. et al., Reviews of Modern Physics93, 025004 (2021), https://doi.org/10.1103/RevModPhys.93.025004

Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Hayman, G.D. et al., Earth System Dynamics 12, 513-544 (2021), https://doi.org/10.5194/esd-12-513-2021

Overshooting tipping point thresholds in a changing climate. Ritchie, P.D.L., Clarke, J.J., Cox, P.M. and Huntingford, C., Nature 592, 517-523 (2021), https://doi.org/10.1038/s41586-021-03263-2

The compost bomb instability in the continuum limit. Clarke, J., Huntingford, C., Ritchie, P. and Cox, P., The European Physical Journal (2021), https://doi.org/10.1140/epjs/s11734-021-00013-3 

Historical and future global burned area with changing climate and human demography. Wu, C., Venevsky, S., Sitch, S., Mercado, L.M., Huntingford, C. and Staver, A.C., One Earth 4, 517-530 (2021), https://doi.org/10.1016/j.oneear.2021.03.002

Multifaceted characteristics of dryland aridity changes in a warming world. Lian, X., Piao, S., Chen, A., Huntingford, C., et al., Nature Reviews Earth & Environment (2021), https://doi.org/10.1038/s43017-021-00144-0 

Seasonal biological carryover dominates northern vegetation growth. Lian, X., Piao, S., Chen, A., Wang, K., Li, X., Buermann, W., Huntingford, C., Peñuelas, J., Xu, H. and Myneni, R.B., Nature Communications12, 983 (2021), https://doi.org/10.1038/s41467-021-21223-2

Technical note: Low meteorological influence found in 2019 Amazonia fires. Kelley, D.I. et al., Biogeosciences18, 787-804 (2021), https://doi.org/10.5194/bg-18-787-2021

Method uncertainty is essential for reliable confidence statements of precipitation projections. Uhe, P. et al., Journal of Climate34, 1227-1240 (2021), https://doi.org/10.1175/JCLI-D-20-0289.1

Converging towards a common representation of large-scale photosynthesis. Huntingford, C. and Oliver, R.J. Global Change Biology , 27, 716-718 (2021), https://doi.org/10.1111/gcb.15398

2020

Temporary "Circuit Breaker" Lockdowns could effectively delay a COVID-19 second wave infection peak to early spring. Rawson, T., Huntingford, C. and Bonsall, M.B., Frontiers in Public Health, (2020), https://doi.org/10.3389/fpubh.2020.614945

Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Cui, J., Piao, S., Huntingford, C., Wang, X., Lian, X., Chevuturi, A., Turner, A.G. and Kooperman, G.J. Nature Communications11, 5184 (2020), https://doi.org/10.1038/s41467-020-18992-7

Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Argles, A.P.K. et al., Geoscientific Model Development13, 4067-4089 (2020), https://doi.org/10.5194/gmd-13-4067-2020

CMIP6 climate models imply high committed warming. Huntingford, C., Williamson, M.S. and Nijsse, F.J.M.M., Climatic Change, 1621515-1520 (2020), https://doi.org/10.1007/s10584-020-02849-5

How and when to end the COVID-19 lockdown: an optimization approach. Rawson, T., Brewer, T., Veltcheva, D., Huntingford, C. and Bonsall, M.B., Frontiers in Public Health8, (2020), https://doi.org/10.3389/fpubh.2020.00262

Quantifying the controls on evapotranspiration partitioning in the highest alpine meadow ecosystem. Cui, J. et al., Water Resources Research55, (2020), https://doi.org/10.1029/2019WR024815

Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia. Moore, J.R. et al., Biogeosciences17, 1013-1032 (2020), https://doi.org/10.5194/bg-17-1013-2020

Summer soil drying exacerbated by earlier spring greening of northern vegetation. Lian, X. et al., Science Advances6, eaax0255 (2020), https://doi.org/10.1126/sciadv.aax0255 

2019

Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Yang, H. et al., Environmental Research Letters14, 124075 (2019), https://doi.org/10.1088/1748-9326/ab5c6f

Machine learning and artificial intelligence to aid climate change research and preparedness. Huntingford, C. et al., Environmental Research Letters14, 124007 (2019), https://doi.org/10.1088/1748-9326/ab4e55

Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Liu, Y. et al., Nature Geoscience12, 809-814 (2019), https://doi.org/10.1038/s41561-019-0436-1

Significant feedbacks of wetland methane release on climate change and the causes of their uncertainty. Gedney, N. et al., Environmental Research Letters14, 084027 (2019), https://doi.org/10.1088/1748-9326/ab2726

How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0? Williams, K.E. et al., Geoscientific Model Development12, 3207-3240 (2019), https://doi.org/10.5194/gmd-12-3207-2019

Decadal global temperature variability increases strongly with climate sensitivity. Nijsse, F.J.M.M. et al., Nature Climate Change9, 598-601 (2019), https://doi.org/10.1038/s41558-019-0527-4

The day the 2003 European heatwave record was broken. Mitchell, D et al., The Lancet Planetary Health3, e290-e292 (2019), https://doi.org/10.1016/S2542-5196(19)30106-8

Assessing changes in risk of amplified planetary waves in a warming world. Huntingford, C et al., Atmospheric Science Letters20, e929 (2019), https://doi.org/10.1002/asl.929

Progressing emergent constraints on future climate change. Hall, A et al., Nature Climate Change9, 269-278 (2019), https://doi.org/10.1038/s41558-019-0436-6

Strong but intermittent spatial covariations in tropical land temperature. Yang, H. et al., Geophysical Research Letters46 (2019), https://doi.org/10.1029/2018GL080463

2018

A large committed long-term sink of carbon due to vegetation dynamics. Pugh, T.A.M. et al., Earth's Future6 (2018), https://doi.org/10.1029/2018EF000935

Changing the retention properties of catchments and their influence on runoff under climate change. Yang, H. et al., Environmental Research Letters13, 094019 (2018), https://doi.org/10.1088/1748-9326/aadd32

Technical note: A simple theoretical model framework to describe plant stomatal "sluggishness" in response to elevated ozone concentrations. Huntingford, C. et al., Biogeosciences15, 5415-5422 (2018), http://doi.org/10.5194/bg-15-5415-2018

Equilibrium forest demography explains the distribution of tree sizes across North America. Moore, J.R. et al., Environmental Research Letters13, 084019 (2018), http://doi.org/10.1088/1748-9326aad6d1

Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Harper, A.B. et al., Nature Communications9, 2938 (2018), http://doi.org/10.1038/s41467-018-05340-z

Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Comyn-Platt, E et al., Nature Geoscience11, 568-573 (2018), http://doi.org/10.1038/s41561-018-0174-9 

Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Lian, X et al., Nature Climate Change 8, 640-646 (2018), http://doi.org/10.1038/s41558-018-0207-9

Increased importance of methane reduction for a 1.5 degree target. Collins, W.J. et al., Environmental Research Letters 13, 054003 (2018), https://doi.org/10.1088/1748-9326/aab89c

Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. Mercado, L.M. et al., New Phytologist 218, 1462-1477 (2018), http://doi.org/10.1111/nph.15100

CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2oC. Burke, E.J. et al., Environmental Research Letters 13, Art 024024 (2018), http://doi.org/10.1088/1748-9326/aaa138

Brief communication: Drought likelihood for East Africa. Yang, H. and Huntingford, C., Natural Hazards and Earth System Sciences 18, 491-497 (2018), http://doi.org/10.5194/nhess-18-491-2018

Climate pattern-scaling set for an ensemble of 22 GCMs - adding uncertainty to the IMOGEN version 2.0 impact system. Zelazowski, P. et al., Geoscientific Model Development 11, 541-560 (2018), https://doi.org/10.5194/gmd-11-541-2018

Emergent constraint on equilibrium climate sensitivity from global temperature variability. Cox, P.M. et al., Nature553, 319-322 (2018), https://doi.org/10.1038/nature25450

2017

Implications of improved representations of plant respiration in a changing climate. Huntingford, C. et al., Nature Communications 8 Art: 1602 (2017), https://doi.org/10.1038/s41467-017-01774-z

Climate variability: Picking apart climate models. Huntingford, C., Nature Climate Change (2017), https://doi.org/10.1038/nclimate3391

Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0ºC. Huntingford, C. et al., Earth System Dynamics 8, 617-626 (2017), https://doi.org/10.5194/esd-8-617-2017

Quantifying uncertainties of permafrost carbon-climate feedbacks. Burke, E.J. et al., Biogeosciences 14, 3051-3066 (2017), https://dx.doi.org/10.5194/bg-14-3051-2017

Compensatory water effects link yearly global land CO2 sink changes to temperature. Jung et al., Nature 541, 516-520 (2017), http://dx.doi.org/10.1038/nature20780

2016

Reply to Adams et al.: Empirical versus process-based approaches to modeling temperature responses of leaf respiration. Heskel et al., Proc Nat Academy Sciences 113, E5996-E5997 (2016), http://dx.doi.org/10.1073/pnas.1612904113

High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5oC over land. Huntingford, C and Mercado, L.M., Scientific Reports 6, 30294, http://dx.doi.org/10.1038/srep30294

Attributing human mortality during extreme heat waves to anthropogenic climate change. Mitchell, D et al., Environmental Research Letters 11, Art Num 074006 (2016), http://iopscience.iop.org/article/10.1088/1748-9326/11/7/074006

Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Dekker, S.C. et al., Earth System Dynamics 7, 525-533 (2016), http://www.earth-syst-dynam.net/7/525/2016/

The dry season intensity as a key driver of NPP trends. Murray-Tortarolo, G et al., Geophysical Research Letters 43, 2632-2639 (2016), http://dx.doi.org/10.1002/2016GL068240

Convergence in the temperature response of leaf respiration across biomes and plant functional types. Heskel, M.A. et al., Proc Nat Academy Sciences 113, 3832-3837 (2016), http://dx.doi.org/10.1073/pnas.1520282113

Human influence on climate in the 2014 southern England winter floods and their impacts. Schaller, N. et al., Nature Climate Change, 6627-634 (2016), http://dx.doi.org/10.1038/nclimate2927

The impacts of climate change across the global: A multi-sectoral assessment. Arnell, N.W. et al., Climatic Change134, 457-474 (2016), http://dx.doi.org/10.1007/s10584-014-1281-2

Global-scale climate impact functions: the relationship between climate forcing and impact. Arnell, N.W. et al., Climatic Change, 134, 475-487 (2016), http://dx.doi.org/10.1007/s10584-013-1034-7

2015

More frequent moments in the climate change debate as emissions continue. Huntingford, C. and Friedlingstein, P. Environmental Research Letters 10  Art Num 121001 (2015) http://dx.doi.org/10.1088/1748-9326/10/12/121001

Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Drijfhout et al, Proc. Nat. Acad. Sciences (2015), http://www.pnas.org/content/early/2015/10/07/1511451112.abstract

Integrating effects of climate change and habitat fragmentation on drought-sensitive butterflies. Oliver et al., Nature Climate Change (2015), http://dx.doi.org/10.1038/nclimate2746

Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models. Yang, H. et al., J Geophys. Res. Atmos120, (2015). http://dx.doi.org/10.1002/2015JD023129

The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics. Huntingford, C. et al,. Environmental Science and Policy51, p77-87, (2015). http://dx.doi.org/10.1016/j.envsci.2015.03.013

Reply to 'Driver of the 2013/14 winter floods in the UK'. Huntingford, C. et al. Nature Climate Change5, p491-492, (2015).

Water-use efficiency and transpiration across European forests during the anthropocene. Frank, D.C. et al., Nature Climate Change5, p579-583 (2015). http://dx.doi.org/10.1038/nclimate2614

Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. Atkin, O.K. et al., New Phytologist206, p614-636 (2015). http://dx.doi.org/10.1111/nph.13253 

Combining the [ABA] and net photosynthesis-based model equations of stomatal conductance. Huntingford, C. et al., Ecological Modelling300, p81-88 (2015). http://dx.doi.org/10.1016/j.ecolmodel.2015.01.005

Recent trends and drivers of regional sources and sinks of carbon dioxide. Sitch, S. et al. Biogeosciences12, p653-679 (2015). http://dx.doi.org/10.5194/bg-12-653-2015

Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models. Peng, S.S. et al. Global Biogeochemical Cycles29, p46-64 (2015). http://dx.doi.org/10.1002/2014GB004931 

2014

Increasing the detectability of external influence on precipitation by correcting feature location in GCMs. Levy, A.A.L, Jenkinson, M., Ingram, W., Lambert, F.H., Huntingford, C. and Allen, M. J Geophysical Research - Atmospheres119, p12466-12478, (2014). http://dx.doi.org/10.1002/2014JD022358

Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Gedney, N., Huntingford C., Weedon, G.P., Bellouin, N., Boucher, O. and Cox, P.M. Nature Geoscience7, p796-800, (2014). http://dx.doi.org/10.1038/NGEO2263

Evidence for a weakening relationship between interannual temperature variability and northern latitude vegetation activity. Piao, S.L. et al. Nature Communications5, (2014). http://dx.doi.org/10.1038/ncomms6018

Potential influences on the United Kingdom's floods of winter 2013/14. Huntingford, C. et al. Nature Climate Change4, p769-777 (2014). http://dx.doi.org/10.1038/NCLIMATE2314

Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration. Walker, A.P. et al., J Geophysical Research-Biogeosciences119, p937-964 (2014). http://dx.doi.org/10.1002/2013JG002553 

Sensitivity of climate change detection and attribution to the characteriszation of internal climate variability. Imbers, J., Lopez, A., Huntingford, C. and Allen, M. J of Climate27, p3477-3491 (2014). http://dx.doi.org/10.1175/JCLI-D-12-00622.1

Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data. Hayman, G.D. et al,. Atmospheric Chemistry and Physics14, p13257-13280 (2014). http://dx.doi.org/10.5194/acp-14-13257-2014

Carbon cycle uncertainty in the Alaskan Arctic. Fisher, J.B. et al,. Biogeosciences11, p4271-4288 (2014). http://dx.doi.org/10.5194/bg-11-4271-2014

Complexity amd determining dangerous levels of climate impacts. Huntingford, C. Environmental Research Latters9, Art: 011001 (2014). http://dx.doi.org/10.1088/1748-9326/9/1/011001

2013

No increase in global temperature variability despite changing regional patterns. Chris Huntingford, Philip D Jones, Valerie N Livinia, Timothy M Lenton, Peter M Cox. Nature, 500, p327-+ (2013). http://dx.doi.org/10.1038/nature12310

Climate projection: Refining global warming projections. Chris Huntingford. Nature Climate Change8, p704-705 (2013). http://dx.doi.org/doi:10.1038/nclimate1964

Simulated resilience of tropical rainforests to CO2-induced climate change. Chris Huntingford et al, Nature Geoscience 6, p268-273. (2013). http://dx.doi.org/doi:10.1038/NGEO1741

Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Peter M Cox, David Pearson, Ben B Booth, Pierre Friedlingstein, Chris Huntingford, Chris D Jones & Catherine M Luke. Nature 494, p341-344 (2013). http://dx.doi.org/doi:10.1038/nature11882

The role of short-lived climate pollutants in meeting temperature goals. Bowerman, Niel H. A.; Frame, David J.; Huntingford, Chris; et al. Nature Climate Change 12, p1021-1024, (2013). http://dx.doi.org/10.1038/NCLIMATE2034

Earth Science: The timing of climate change. Huntingford. C., Mercado, L. and Post, E. Nature502, p174-175, (2013). http://dx.doi.org/10.1038/502174a

African tropical rainforest net carbon dioxide fluxes in the twentieth century. Fisher, J.B. et al. Phil Trans Roy Soc B368 (2013). http://dx.doi.org/10.1098/rstb.2012.0376

Explaining extreme events of 2012 from a climate perspective. Peterson, T.C. et al. Bulletin of the American Meteorological Society94, pS1-S74 (2013). http://dx.doi.org/10.1175/BAMS-D-13-00085.1

Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Piao et al., Global Change Biology19, p2117-2132 (2013). http://dx.doi.org/10.1111/gcb.12187 

Testing the robustness of the anthropogenic climate change detection statements using different empirical models. Imbers, J., Lopez, A., Huntingford, C. and Allen, M.R. J Geophysical Research-Atmospheres118, p3192-3199 (2013). http://dx.doi.org/10.1002/jgrd.50296

Can correcting feature location in simulated mean climate improve agreement on projected changes? Levy, A.A.L et al. Geophysical Research Letters40, p354-358 (2013). http://dx.doi.org/10.1029/2012/GL053964

Allowable carbon emissions for medium-to-high mitigation scenarios. Tachiiri et al. Tellus Series B - Chemical and Physical Meteorology65, (2013). http://dx.doi.org/10.3402/tellusb.v65i0.20586

The global carbon budget 1959-2011. LeQuere et al. Earth System Science Data5, p165-185 (2013). http://dx.doi.org/10.5194/essd-5-165-2013

2012

Equivalence of greenhouse-gas emissions for peak temperature limits. Stephen M Smith, Jason A Lowe, Niel H A Bowerman, Laila K Gohar, Chris Huntingford & Myles R Allen. Nature Climate Change 2 p535-538 (2012). http://dx.doi.org/doi:10.1038/NCLIMATE1496

The link between a global 2°C warming threshold and emissions in years 2020, 2050 and beyond. Chris Huntingford, Jason A. Lowe, Laila K. Gohar, Niel H.A. Bowerman, Myles R. Allen, Sarah C.B. Raper and Stephen M. Smith. Environ. Res. Lett7 (2012) 014039 (8pp). http://dx.doi.org/doi:10.1088/1748-9326/7/1/014039.

High sensitivity of future global warming to land carbon cycle processes. Ben Booth, Chris D Jones, Mat Collins, Ian J Totterdell, Peter M Cox, Stephen Sitch, Chris Huntingford, Richard A Betts, Glen R Harris and Jon Lloyd. Environ. Res Lett7 (2012) 024002 (8pp). http://dx.doi.org/doi:10.1088/1748-9326/7/2/024002.

Model complexity versus ensemble size: allocating resources for climate prediction. Christopher A. T. Ferro, Tim E. Jupp, F. Hugo Lambert, Chris Huntingford and Peter M. Cox. Phil. Trans. R. Soc. A 370, p1087-1099 (2012). http://dx.doi.org/doi:10.1098/rsta.2011.0307

2011

The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. D.B. Clark, L.M. Mercado, S.Sitch, C.D. Jones, N.Gedney, M.J. Best, M. Pryor, G.G. Rooney, R.L.H. Essery, E. Blyth, O. Boucher, R.J. Harding, C. Huntingford, and P.M. Cox. Geosci. Model Dev., 4, p701–722 (2011). http://dx.doi.org/10.5194/gmd-4-701-2011

Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services.
C. Huntingford, P. M. Cox, L. M. Mercado, S. Sitch, N. Bellouin, O. Boucher and N. Gedney. Phil. Trans. R. Soc. A 369, 2026-2037 (2011). http://dx.doi.org/10.1098/rsta.2010.0314.

Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Bowerman, N.H.A., Frame, D.J., Huntingford, C., Lowe, J.A. and Allen, M.R. Phil. Trans. R. Soc. A369, p45-66 (2010). http://dx.doi.org/10.1098/rsta.2010.0288

Trends in the sources and sinks of carbon dioxide. Le Quere, C., Raupach, M.R., Canadell, J.G. et al. Nature Geoscience2, p831-836 (Dec 2009) http://dx.doi.org/10.1038/ngeo689 

Quantifying environmental drivers of future tropical forest extent. Good, Peter, Jones, Chris, Lowe, Jason, Betts, Richard, Booth, Ben, Huntingford, Chris. Journal of Climate24, Issue , p1337 -1349 (2011). http://dx.doi.org/10.1175/2010JCLI3865.1

Changes in the potential distribution of humid tropical forests. Zelazowski, P., Mahli, Y., Huntingford, C., Sitch, S. and Fisher, J.B. Phil. Trans. of the R. Soc. A369, p137-160 (2011). http://dx.doi.org/10.1098/rsta.2010.0238

2010

Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. Galbraith, D., Levy, P.E., Sitch, S., Huntingford, C., Cox, P., Williams, M. and Meir, P. New Phytologist187, p647-665 (2010). http://dx.doi.org/10.1111/j.1469-8137.2010.03350.x

IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climate. C. Huntingford, B. B. B. Booth, S. Sitch, N. Gedney, J. A. Lowe, S. K. Liddicoat, L. M. Mercado, M. J. Best, G. P.Weedon, R. A. Fisher, M. R. Lomas, P. Good, P. Zelazowski, A. C. Everitt, A. C. Spessa, and C. D. Jones. Geoscientific Model Development3, p679-687 (2010). http://dx.doi.org/10.5194/gmd-3-679-2010

Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., Huntingford, C., Meir, P. and Woodward, F.I. New Phytologist187, 666-681 (2010). http://dx.doi.org/10.1111/j.1469-8137/2010.03340.x

Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Fisher, J.B., Sitch, S., Malhi, Y., Fisher, R.A., Huntingford, C. and Tan, S.Y. Global Biogeochemical Cycles24, GB1014, (2010). http://dx.doi.org/10.1029/2009GB003621

Hughes, J.K., Lloyd, A.J., Huntingford, C. et al. The impact of extensive planting of Miscanthus as an energy crop on future CO2 atmospheric concentrations. Source: Global Change Biology Bioenergy2, p79-88 (2010). http://dx.doi.org/10.1111/j.1757-1707.2010.01042.x

2009

Warming caused by cumulative carbon emissions towards the trillionth tonne. Allen, M. R., Frame, D. J, Huntingford, C., Jones, C.D., Lowe, J.A., Meinshausen, M. and Meinschausen, N. Nature 458, p1163-1166 (2009) http://dx.doi.org/10.1038/nature08019

Contributions of carbon cycle uncertainty to future climate projection spread. Huntingford, C.., Lowe, J.A., Booth, B.B.B. et al. Tellus Series B - Chemical and Physical Meteorology61, p355-360 (2009). http://dx.doi.org/0.1111/j.1600-0889.2009.00414.x.

How difficult is it to recover from dangerous levels of global warming? Lowe, J.A., Huntingford, C., Raper, S.C.B., Jones, C.D., Liddicoat, S.K., Gohar, L.K. Environ. Res. Lett4 014012 (2009). http://dx.doi.org/10.1088/1748-9326/4/1/014012.

Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Malhi, Y., Aragao L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C. and Meir, P. Proceedings of the National Academy of Sciences of the United States of America106, (2009). http://dx.doi.org/10.1073/pnas.0804619106

Impact of changes in diffuse radiation on the global land carbon sink. Mercado, L. M., Bellouin, N., Sitch, S. et al. Nature 458 (2009). http://dx.doi.org/10.1038/nature07949

2008

What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy? House, J.I., Huntingford, C., Knorr, W. et al. Environmental Research Letters3, Art. 044002 (2008). http://www.iop.org/EJ/abstract/1748-9326/3/4/044002

Observed climate change constrains the likelihood of extreme future global warming. Stott, P.A., Huntingford, C., Jones, C.D. et al. Tellus Series B-Chemical and Physical Meteorology60, p76-81 (2008). http://dx/doi.org/10.1111/j.1600-0889.2007.00329.x.

Amazon Basin climate under global warming: the role of the sea surface temperature. Harris, P.P., Huntingford, C., Cox, P.M. Phil. Trans. of the R.l Soc. B-Biological Sciences363, p1753-1759 (2008). http://dx.doi.org/10.1098/rstb.2007.0037

Towards quantifying uncertainty in predictions of Amazon “dieback”. Huntingford , C., Fisher, R.A., Mercado, L. et al. Phil. Trans. of the R. Soc. B-Biological Sciences, Volume 363, Issue 1498, Pages 1857-1864 (2008). http://dx.doi.org/10.1098/rstb.2007.0028

Increasing risk of Amazonian drought due to decreasing aerosol pollution. Cox, P.M., Harris, P.P., Huntingford, C., et al. Nature453, p212-U7 (2008). http://dx.doi.org/10.1038/nature06960

Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Sitch, S., Huntingford, C., Gedney, N. et al. Global Change Biology14, p2015-2039 (2008). http://dx.doi.org/10.1111/j.1365-2486.2008.01626.x

Climate change: Seeking balance in media reports. Huntingford, C., Fowler, D. Environmental Research Letters3, (2008). http://dx.doi.org/10.1088/1748-9326/3/2/021001

2007

"Overshoot" scenarios and climate change.
Huntingford, C., Lowe, J. Science316, p829-829, (2007). http://dx.doi.org/10.1126/science.316.5826.829b

Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints. Jones, C.D., Cox, P.M., Huntingford, C. Tellus Series B-Chemical and Physical Meteorology58, p603-613, (Nov 2006). http://dx.doi.org/10.1111/j.1600-0889.2006.00215.x.

Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Betts, R.A., Boucher, O., Collins, M. et al. Nature448, p1037-U5 (2007). http://dx.doi.org/10.1038/nature06045

On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Buonomo, E., Jones, R., Huntingford, C. et al. Quarterly Journal of the Royal Meteorological Society133, p65-81 (Jan 2007). http://dx.doi.org/10.1002/qj.13

Improving the representation of radiation interception and photosynthesis for climate model applications. Mercado, L.M., Huntingford, C., Gash, J.H.C. et al. Tellus Series B-Chemical and Physical Meteorological59, p553-565 (2007). http://dx.doi.org/10.1111/j.1600-0889.2007.00256.x.

Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Sitch, S., Cox, P.M., Collins, W.J. et al. Nature448, p791-U4 (2007). http://dx.doi.org/10.1038/nature06059

Impact of climate change on health: what is required of climate modellers? Huntingford, C., Hemming, D., Gash, J.H.C. et al. Trans. of the Roy. Soc. of Tropical Medicine and Hygiene101, p97-103 (Feb 2007). doi: 10.1016/j.trstmh.2006.11.001

2006

Incorporating model uncertainty into attribution of observed temperature change. Huntingford, C., Stott, P.A., Allen, M.R. et al. Geophysical Research Letters33, (2006). http://dx.doi.org/10.1029/2005GL024831

Detection of a direct carbon dioxide effect in continental river runoff records. Gedney, N., Cox, P.M., Betts, R.A. et al. Nature439, 835-838 (2006). http://dx.doi.org/10.1038/nature04504

Continental runoff - A quality-controlled global runoff data set - Reply. Gedney, N., Cox, P.M., Betts, R.A. et al. Nature444, pE14-E15 (2006). http://dx.doi.org/10.1038/nature05481

Evaluation of the rainfall component of a weather generator for climate impact studies. Elshamy, M.E., Wheater, H.S., Gedney, N. et al. Journal of Hydrology326, p1-24 (Jul 2006). http://dx.doi.org/10.1016/j.jhydrol.2005.09.017

Climate change and hydrology: next steps for climate models. Huntingford, C., Gash, J., Giacomello, A.M. Hydrological Processes, 20, p2085-2087 (Jun 2006). http://dx.doi.org/10.1002/hyp.6208

2005

Attribution studies of observed land precipitation changes with nine coupled models. Lambert, F.H., Gillett, N.P., Stone, D.A. et al. Geophysical Research Letters32, (2005). http://dx.doi.org/10.1029/2005GL023654

Aspects of climate change prediction relevant to crop productivity. Huntingford, C., Lambert, F.H., Gash, J.H.C. et al. Phil. Trans. of the Roy. Soc. B-Biological Sciences360, p1999-2009 (2005). http://dx.doi.org/10.1098/rstb.2005.1748

Climate equity for all. Author(s): Huntingford, C., Gash, J. Science309, p1789-1789 (2005). http://dx.doi.org/10.1126/science.1115898

Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Elliott, J.A., Thackeray, S.J., Huntingford, C. et al. Freshwater Biology50, p1404-1411 (2005). http://dx.doi.org/10.1111/j.1365-2427.2005.01409.x

Modelling long-term transpiration measurements from grassland in southern England. Harding, R.J., Huntingford, C., Cox, P.M. Agricultural and Forest Meteorology100, p309-322 (2005). http://dx.doi.org/10.1016/S0168-1923(99)00152-5

2004

Preface. Gash, J.H.C., Marengo, J.A., Huntingford, C. Theoretical and Applied Climatology78, p3-3 (2004). http://dx.doi.org/10.1007/s00704-004-0040-0

Calibration of a land-surface model using data from primary forest sites in Amazonia. Harris, P.P., Huntingford, C., Gash, J.H.C. et al. Theoretical and Applied Climatology78, p27-45 (2004). http://dx.doi.org/10.1007/s00704-004-0042-y

Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Cox, P.M., Betts, R.A., Collins, M. et al. Theoretical and Applied Climatology78, p137-156, (2004). http://dx.doi.org/10.1007/s00704-004-0049-4

The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Betts, R.A, COX, P.M., Collins, M. et al. Theoretical and Applied Climatology78, 157-175 (2004). http://dx.doi.org/10.1007/s00704-004-0050-y

Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Huntingford, C., Harris, P.P., Gedney, N., et al. Theoretical and Applied Climatology78, p177-185 (2004). http://dx.doi.org/10.1007/s00704-004-0051-x

Amazonian climate: results and future research. Gash, J.H.C., Huntingford, C., Marengo, J.A. et al. Theoretical and Applied Climatology78, p187-193 (2004).
http://dx.doi.org/10.1007/s00704-004-0052-9

Effect of soil moisture on canopy conductance of Amazonian rainforest. Harris, P.P., Huntingford, C., Cox, P.M. et al. Agricultural and Forest Meteorology122, 215-227 (2004). http://dx.doi.org/10.1016/j.agrformet.2003.09.006

Climate feedback from wetland methane emissions. Gedney, N., Cox, P.M., Huntingford, C. Geophysical Research Letters31, (2004). http://dx.doi.org/10.1029/2004GL020919

2003

Regional climate-model predictions of extreme rainfall for a changing climate. Huntingford, C., Jones, R.G., Prudhomme, C. et al. Quarterly Journal of the Royal Meteorological Society129, 1607-1621 (2003). http://dx.doi.org/10.1256/qj.02.97

Extent of partial ice cover due to carbon cycle feedback in a zonal energy balance model. Huntingford, C., Hargreaves, J.C., Lenton, T.M. et al. Hydrology and Earth System Sciences7, 213-219, (2003).

Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Lenton, T.M., Huntingford, C. Global Change Biology9, 1333-1352 (2003). http://dx.doi.org/10.1046/j.1365-2486.2003.00674.x

Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Jones, C.D., Cox, P., Huntingford, C. Tellus Series B-Chemical and Physical Meteorology55, p642-648 (2003).

Improved description of soil hydraulic and thermal properties of arctic peatland for use in a GCM. Hall, R.L., Huntingford, C., Harding, R.J. et al. Hydrological Processes17, p2611-2628 (2003). http://dx.doi.org/10.1002/hyp.1265

2000

An analogue model to derive additional climate change scenarios from existing GCM simulations. Huntingford, C., Cox, P.M. Climate Dynamics16, p575-586 (2000). http://dx.doi.org/10.1007/s003820000067

Contrasting responses of a simple terrestrial ecosystem model to global change. Huntingford, C., Cox, P.M, Lenton, T.M. Ecological Modelling134, p41-58 (2000). http://dx.doi.org/10.1016/S0304-3800(00)00330-6

Dual versus single source models for estimating surface temperature of African savannah. Huntingford, C., Verhoef, A., Stewart, J. Hydrology and Earth System Sciences4, Issue 1, p185-191 (Mar 2000).

1998

A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Cox, P.M., Huntingford, C., Harding, R.J. Journal of Hydrology213, 79-94 (1998). http://dx.doi.org/10.1016/S0022-1694(98)00203-0

The behaviour of a mixed-layer model of the convective boundary layer coupled to a big leaf model of surface energy partitioning. Huntingford, C., Monteith, J.L. Source: Boundary Layer Meteorology, 88, 87-101 (1998). http://dx.doi.org/10.1023/A:1001110819090

The effect of orography on evaporation. Huntingford, C., Blyth, E.M., Wood, N. et al. Boundary Layer Meteorology86, 487-504 (1998). http://dx.doi.org/10.1023/A:1000795206459

An argument for the use of two-layer SVAT schemes to simulate terrestrial carbon dioxide fluxes. Huntingford, C., Hall, R.L., Verhoef, A. Hydrology and Earth System Sciences2, p299-302 (1998).

1997

Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment. Huntingford, C., Cox, P.M. Ecological Modelling97, p217-246 (1997). http://dx.doi.org/10.1016/S0304-3800(96)01905-9

1996

A note on the similarity groups of the Penman-Monteith Big Leaf Model. Huntingford, C. Boundary Layer Meteorology, 79, p307-312 (1996). http://dx.doi.org/10.1007/BF00119444

An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savannah (Correction Volume 74, p397, 1995). Huntingford, C., Allen, S.J., Harding, R.J. Boundary Layer Meteorology77, p101-101 (1996).

1995

An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savanna. Huntingford, C., Allen, S.J., Harding, R.J. Boundary-Layer Meteorology74, p397-418 (1995). http://dx.doi.org/10.1007/BF00712380

Non-Dimensionalisation of the Penman-Monteith model. Huntingford, C. Journal of Hydrology170, p215-232 (1995). http://dx.doi.org/10.1016/002-1694(94)02673-Y

An exact solution to the one-phase zero-surface-tension Hele-Shaw free-boundary problem. Huntingford, C. Computers & Mathematics with Applications29, p45-50 (1995). http://dx.doi.org/10.1016/0898-1221(95)00044-Y

1994

A model for nonsmooth free boundaries in Hele-Shaw flows. Hohlov, Y.E., Howison, S.D., Huntingford, C. Et al. Quarterly Journal of Mechanics and Applied Mathematics47, p107-128 (1994). http://dx.doi.org/10.1093/qjmam/47.1.107

My background is as a mathematician, with an MA in Mathematics (Cambridge), and MSc in Mathematical Modelling and Numerical Analysis (Oxford) followed by the DPhil in Fluid Dynamics (Oxford). I then joined CEH in 1993, and have worked here ever since, along with maintaining on-going visiting scientist status at the AOPP and OUCE departments of Oxford University.